
The Virtual Data Grid: An Infrastructure to Support
Distributed Data-Centric Applications

Jon Weissman and Colin Gan
Army High Performance Computing and Research Center
Department of Computer Science, University of Minnesota

1.0 Introduction

Distributed data-centric applications are an increasingly important class of applications in the
scientific and military domain. Often times, the data of interest is large, and distributed across
different remote storage locations and data delivery networks. In the digitally enhanced battlefield
of the future, data will be generated from sensor grids, a variety of national assets, and real-time
simulations running on high-performance computers. Collectively, these sources produce
continuous data of mixed traffic classes that are intermittently available and offer highly variable
bandwidth both within their internal networks and to outside connections. Clients may wish to
access these data sources from a variety of hand-held or wearable devices including low-power
wireless devices in the field. Furthermore, different clients may expect to receive different views
of the data depending on their context and their role. The future digitally enhanced battlefield will
require such customized and pro-active delivery of critical data products to military personnell in
combat and to high-performance data-intensive applications running on their behalf, e.g. data
mining. Data from multiple distributed sources must be delivered reliably, often in real-time,
while masking the heterogeneity of storage systems and data formats.

In this design paper, we introduce an infrastructure called the Virtual Data Grid (VDG) that
provides reliable, high performance, data-delivery services for large-scale scientific applications
and end-users that require access to distributed data. The VDG presents a persistent, continuously
available data network that masks the intermittency, heterogeneity, and distribution of the data
sources that feed it. The VDG infrastructure utilizes metacomputing technology to support data-
centric applications by providing seamless management and delivery of heterogeneous data
sources for Army applications. We are applying the VDG concept to support next-generation
synthetic battlefield simulation as part of the AHPCRC. We will describe a motivating
application, the current status of the VDG system architecture, and the research challenges we are
addressing in the area of data scheduling.

2.0 A Motivating Scenario

Military personnel may want to access a large amount of data distributed across different remote
storage locations in a battlefield scenario. This is critical in the proposed new Network Centric
Combat model by the Army encompassing different data sources, including:

a) Information Grid. This provides the infrastructure for Network Centric Computing and
Communications. It provides the means to receive, process, transport, store and protect



information for the Joint and combined forces. Its embedded capabilities for Information
Assurance prevent intrusive attack and assure commanders that their information will be
valid. It provides the necessary infrastructure to permit the plug and play of the sensors
and shooters. It will exist in space in both low and high-earth orbit, in the air at all
altitudes, on land and under the sea. It is a physical permanent grid.

b) Sensor Grid. This is composed of air, sea, ground, space and cyberspace-based sensors,
and includes dedicated sensors, sensors based on weapons platforms, and sensors
employed by individual soldiers and embedded logistics sensors. It provides the Joint
force with a high degree of awareness of friendly forces, enemy forces and the
environment across the Joint Battlespace. It is a transient grid. The sensors are physical
and when tasked to produce information about a target they are interrelated, the grid
exists for the task only and is amended for every mission.

c) Shooter Grid. This enables the Joint Warfighter to plan and execute operations in a
manner achieving an overwhelming effect at precise places and time. It is like the sensor
grid where the piece parts are physical but the grid is only virtual. The shooters are
tasked to create the necessary effect on the battlefield then dynamically retasked when
nececssary.

Military personnel may wish to access different data objects from Information, Sensor or Shooter
Grids from a variety of hand-held or wearable devices including low-power wireless devices in
the field. Since these various Grids may become unavailable and in the worst case destroyed by
enemies, a persistent snapshot of the data must be available. This is maintained within the VDG,
which stores data published by the constituent data sources.

This kind of data grid could also support applications like battlefield simulation and visualization.
This application would use these data sources coupled with up-to-date weather, terrain, and troop
position data, to simulate complex and realistic scenarios. In addition, “what if” analysis may
require on-demand launch of high performance scientific simulations to produce data needed
within the simulation as well. This must also be accommodated in the VDG architecture.

3.0 System Architecture

The VDG system architecture is depicted below. It contains of a web of interconnected VDG
servers each attached to large storage depots. Data producers (above) generate data that is stored
to the VDG via a data producing API. Likewise, data consumers (below) consume data via an

Shooters
Grid

Sensor
GridSOF Soldier

Virtual Data
Grid



API for data access. VDG servers provide a variety of services including data publishing,
subscription, location, and discovery. In addition, VDG servers will move, replicate, cache, and
stripe data objects for increased performance. Data objects are represented by meta-data (via
XML) that describe the properties of the data, how to access it, how to find it, and possibly how
to compute it. In the latter case, a data object might require the launching of computation to
produce it. All data object representations are stored in a distributed registry that stores the
location of all data objects. We are currently designing and building a VDG prototype at the
AHPCRC using the Globus toolkit to provide low-level enabling infrastructure to move data
efficiently and securely within the network, and to launch computations on remote resources.

VDG
server

VDG
server

VDG
server

sensor
networks

national
assets

Internet
sources

hpc
simulations

battlefield
simulation battlefield

visualization
VDG user

 

Intermittent
network

Persistent
network



4.0 Data Scheduling

To date, we have focused on one aspect of the VDG – date scheduling to achieve high
performance. We describe our approach to this complex problem and some ideas we are currently
exploring. Data scheduling must take into account the following:

● VDG server resources,

● VDG network bandwidth,

● VDG disk storage space,

● Client performance criteria: how soon must the data object be delivered to the client?

● Requested data size: how big is the size of the data object requested? This will determine the
way in which it is delivered to the clients.

Data objects have a home location (or depot) in the VDG. Data objects will be moved (cached) at
locations (depots) closer to the clients that use them. Therefore, caching strategies (replacement
and validation) must be adopted When the cache is full, one or more cached objects has to be
evicted to make space for the new incoming cached object through cache spillage. The
replacement policy deals with cache spillage. A good replacement policy is required to select a
cached object for removal that will least impact performance. The object selected for removal is
ideally one that will not be used until the distant future.

The best performance is achieved by policies take into account the size of the objects evicted.
LRU-MIN is a policy derived from LRU (least recently used) that tries to minimize the number of
objects evicted by applying LRU only to the objects whose size is above some threshold. The
threshold is adaptive: if not enough space has been released, the threshold is lowered and the
policy is applied again. This policy outperforms every other removal policy. Another policy that
gives a lower but comparable performance is LFU (least referenced file removed first). Most
policies are some form of LRU. The advantage of LRU is its simplicity. Its drawback is it does
not consider file sizes and latency. Before applying a cache replacement policy, the following
factors should be considered:

● Inter-access time. Objects that have a smaller inter-access time are more likely to be requested
in the future. Using this technique, the LRU algorithm will select the object with the largest inter-
access time to be evicted.

● Number of Previous Accesses. Using the number of previous accesses made to an object is a
good indication as to whether the object will be requested in future. This cannot be used alone as
the deciding factor as it does not allow aging of a object, i.e. an object which has been accessed
many times in the past but has not been accessed in a while.

● Object size. This is another important factor to be considered while caching. In caching,
objects will be of different sizes. A high hit ratio may mean that more small objects should be
cached. As more objects are found in the cache the higher will be the hit ratio.

● Cost for acquiring the object. It is important also to take into consideration the cost incurred in
acquiring the object. The more expensive the object, the better it is to retain the object in the



cache. The object could be expensive because the network bandwidth to the originating server is
small hence requiring more time to download.

Caching Strategies

We now present some caching strategies that we are exploring. Since the best strategy depends on
the specific VDG and the kind of workload, we plan to implement a set of strategies and have the
VDG learn which one is the most appropriate over time. Self-adaptive mechanisms for cache
policies will be based on the hit-rates of the cache and thresholds. When the hit-rate falls below a
specified threshold, a different caching policy will be selected automatically.

● Least-Recently-Used (LRU): evicts the object that was requested the least recently.

● Least-Frequently-Used (LFU): evicts the object that is accessed least frequently.

● Size: evicts the largest object.

● LRU-Threshold: is the same as LRU, except objects larger than a certain threshold size are
never cached

● Hyper: is a refinement of LFU with last access time and size considerations included.

● Lowest-Latency-First: tries to minimize average latency by removing the object with the lowest
download latency first.

● Hybrid: is aimed at reducing the total latency. A function is computed for each object that
captures the utility of retaining a given object in the cache. The object with the smallest function
value is then evicted. The function for a object p located at server s depends on the following
parameters: cs, the time to connect with server s, bs the bandwidth to server s, np the number of
times p has been requested since it was brought into the cache, and zp, the size (in bytes) of object
p. The function is defined as:

(Cs + Wb/bs) (np) Wn

__________________
Zp

where Wb and Wn are constants. Estimates for cs and bs are based on the times to fetch objects
from servers in the recent past.

● Lowest Relative Value (LRV): includes the cost and size of an object in the calculation of a
utility value for keeping an object in the cache. The algorithm evicts the object with the lowest
value. The calculation of the value is based on extensive empirical analysis of trace data. For a
given i, let Pi denote the probability that an object is requested i + 1 times given that it is
requested i times. Pi is estimated in an online manner by taking the ratio Di+1/Di, where Di is the
total number of objects seen so far which have been requested at least i times in the trace. Pi(s) is
the same as Pi except the value is determined by restricting the count only to objects of size s.
Furthermore, let 1- D(t) be the probability that a object is requested again as a function of the
time (in seconds) since its last request t; D(t) is estimated as:

D(t) = 0.035 log(t + 1) + 0.45 (1 - e-t/2eσ)



Then for a particular object d of size s and cost c, if the last request to d is the i'th request to it,
and the last request was made t seconds ago, d's value in LRV is calculated as:

V(i, t, s) = Pi(s) (1 - D(t)) c/s, if i = 1
Pi (1 - D(t)) c/s, otherwise

Among all objects, LRV evicts the one with the lowest value. Thus, LRV takes into account
locality, cost and size of an object.

● Greedy Dual-Size: This algorithm works as follows:

It associates a value, H, with each cached object p. Initially, when a object is brought into cache,
H is set to be the cost of bringing the object into the cache (the cost is always non-negative).
When a replacement needs to be made, the object with the lowest H value, minH, is replaced, and
then all objects reduce their H values by minH. If an object is accessed, its H value is restored to
the cost of bringing it into the cache. Thus, the H values of recently accessed objects retain a
larger portion of the original cost than those of objects that have not been accessed for a long
time. By reducing the H values as time goes on and restoring them upon access, the algorithm
integrates the locality and cost concerns in a seamless fashion.

To handle different object sizes, we extend it by setting H to cost/size upon an access to an object,
where cost is the cost of bringing the object into the cache, and size is the size of the object in
bytes. We called the extended version the GreedyDual-Size algorithm. The definition of cost
depends on the goal of the replacement algorithm: cost is set to 1 if the goal is to maximize hit
ratio, it is set to the downloading latency if the goal is to minimize average latency, and it is set to
the network cost if the goal is to minimize the total cost.

At the first glance, GreedyDual-Size would require k subtractions when a replacement is made,
where k is the number of objects in cache. However, a different way of recording H removes
these subtractions. The idea is to keep an "inflation" value L, and let all future setting of H be
offset by L. Below is an efficient implementation of the algorithm.

Initialize L = 0. Process each request object in turn: The current request is for object p:

1. if p is already in cache,
2. H(p) = L + c(p)/s(p).
3. if p is not in cache,
4. while there is not enough room in cache for p,
5. Let L = minq∈MH(q)
6. Evict q such that H(q) = L.
7. Bring p into cache and set H(p) = L + c(p)/s(p)
end

Using this technique, GreedyDual-Size can be implemented by maintaining a priority queue on
the objects, based on their H value. Handling a hit requires O(log k) time and handling an eviction
requires O(log k) time, since in both cases a single item in the queue must be updated. More
efficient implementations can be designed that make the common case of handling a hit requiring
only O(1) time.



Pre-Staging Strategies: When to Cache?

The decision to cache an object can be made when the object is accessed or by pre-staging
objects. The latter can be achieved with knowledge of prior data access patterns. Pre-staging is
crucial to reducing object access latency when performance demands are tight. Such access
patterns can be explicitly provided by the client (e.g. “I will want an update of the satellite
weather data every hour”) or in future work, inferred by the system. In addition to timing
constraints for single object access such as above, there are data object access patterns to consider
when multiple data objects are accessed by the client:

● Sequential: Client accesses data objects d1, then d2 and finally d3.

● Concurrent: Client accesses data objects d1, d2, d3 and d4 concurrently.

● Out-of-Order: For example, client could accesses data objects d1, d2, d3 and d4 in any order.

We are currently investigating how to pre-stage data objects given both temporal and spatial
access patterns. For example, in concurrent access, ideally all of the data objects should be pre-
staged locally simultaneously. On the other hand, in sequential access, there is more flexibility:
d1 should be staged locally first, and the d2, and so on.

6.0 Related Work

A number of research groups have implemented infrastructures similar to the VDG but differ in
the applications supported or in the underlying data scheduling support. OceanStore [OS] is a
utility infrastructure designed to span the globe and provide continuous access to persistent
information. It consists of untrusted servers and data is protected through redundancy and
cryptographic techniques. The concept of “data cached anywhere, anytime” is proposed. VDG
differs itself from OceanStore as it also determines the best data objects to cache and where and
when to do so. The Internet Backplane Protocol (IBP) [NS] controls storage that is implemented

d1 d2 d3

d2
d3

d4d1

d1
d4

d3

d2



as part of the network fabric itself. It allows an application to control intermediate data staging
operations as data is communicated between processes. The application can exploit locality and
manage scarce buffer resources effectively. VDG differs from IBP by making more precise
decisions on data locality and scarce resource management through identification of common data
object access patterns, but it shares the concept of storage depots. Globus Data Grid is an
infrastructure [GL] with services for storage, metadata, replica and cache management, replica
creation and selection. VDG differs itself from the Globus Data Grid by implementing
scheduling policies for data objects based on cache replacement, data access patterns, object
popularity, and network resources.

Acknowledgements
This work was sponsored in part by the Army High Performance Computing Research Center
(AHPCRC) under the auspices of the Department of the Army, Army Research Laboratory
cooperative agreement number DAAD19-01-2-0014.

7.0 Bibliography

[NS] J.S. Plank et al., “The Internet Backplane Protocol: Storage in the Network,” Proceedings of
NetStore 1999.

[OS] J. Kubiatowicz et al., “OceanStore: An Architecture for Global-Scale Persistent
Storage,” Proceedings of the Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000), November 2000.

[GL] Globus: www.globus.org, 2002.


